MATH-329 Nonlinear optimization Exercise session 4: Hessians and Newton's method

Instructor: Nicolas Boumal TAs: Andrew McRae, Andreea Musat

Document compiled on September 25, 2024

Exercises marked with (*) will be used in later exercises or in the homeworks: you might want to prioritize those.

1. Good and bad global behavior of Newton's method.

- 1. Consider the function $f(x) = \frac{1}{4}x^4 x^2 + 2x + 1$. What is the behavior of Newton's method on f if the initial point is $x_0 = 0$? (Observe numerically first.)
- 2. Argue that $f(x) = \log(e^x + e^{-x})$ has a Lipschitz continuous gradient, a Lipschitz continuous Hessian, and is strictly convex (it helps to plot the function). What is the behavior of Newton's method on this function with $x_0 = 1$? And with $x_0 = 1.5$?
- 3. Consider the Rosenbrock function

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

with a = 1 and b = 100. Run Newton's method with $x_0 = (-1.2, 1)$. Compare the performance with the one of gradient descent for this initial point.

2.(*) Regression loss function. We let $y \in \mathbb{R}^m$ and $F : \mathbb{R}^n \to \mathbb{R}^m$ be a C^2 map. Consider the C^2 regression function $f : \mathbb{R}^n \to \mathbb{R}$ defined by

$$f(x) = \frac{1}{2} ||F(x) - y||^2.$$

Find the gradient and the Hessian of f as a function of the derivatives of F.

Hint: There are two ways to see this. You can see F as m scalar functions that have a gradient and a Hessian and express everything as a function of this. Or you can define the Jacobian of F as $J(x) = DF(x) \in \mathbb{R}^{m \times n}$. Then J is a function $\mathbb{R}^n \to \mathbb{R}^{m \times n}$ and for all $x, u \in \mathbb{R}^n$ we have $DJ(x)[u] \in \mathbb{R}^{m \times n}$.

- **3.** Computing Hessians. For the following functions $f: \mathcal{E} \to \mathbb{R}$ give an expression for the gradient and the Hessian. Specifically, for the Hessian compute $\nabla^2 f(x)[u]$ for all $x, u \in \mathcal{E}$.
 - 1. Given $a \in \mathbb{R}^n$, consider $f(x) = \frac{1}{2}(x^{\mathsf{T}}x + (a^{\mathsf{T}}x)^2)$ for all $x \in \mathbb{R}^n$.

2. (*) Given $A \in \mathbb{R}^{m \times n}$, $M \in \mathbb{R}^{n \times n}$, consider the function $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ defined by

$$f(X) = \frac{1}{2} ||A^{\mathsf{T}}X - M||_{\mathrm{F}}^{2},$$

where $\|\cdot\|_{F}$ is the Frobenius norm.